
www.computing.me.uk

Fortran 77: Subroutines

It has always been good programming practice to divide a computer program up into blocks of
code that were as independent of each other as possible. These blocks were termed modules
and the division of code in this way is often called procedural programming or modular
programming1. In Fortran modules are collectively termed subprograms and there are two main
types of subprogram; a subroutine which carried out a defined task and a function2

A subroutine is used in a similar way to a function in Fortran, but it does not formally return a
value. A function can therefore be used to carry out a pre-defined task. A subroutine declaration
is of the following form.

, which
carried out a task but with a purpose of returning a value. In this document we consider the use
of subroutines in Fortran.

When the subroutine is called, the types of the arguments must also match those in the
subroutine declaration. A typical subroutine for printing a message is listed here, and a call to
the subroutine from a main program and the output is shown.

1 Modular Programming
2 FTN77 User-defined functions

SUBROUTINE <subroutine identifier>(<arguments>)
<delaration of arguments>
:
<function identifier> = <expression>
END

C Subroutine HELLOWORLD
 PROGRAM HELLOWORLD
 CHARACTER*20 AMESSAGE
 AMESSAGE='Hello World!'
 CALL PRINTIT(AMESSAGE)
 END

C Subroutine PRINTIT accepts the string MESSAGE as input and
C prints the same string.
 SUBROUTINE PRINTIT(MESSAGE)
 CHARACTER*20 MESSAGE
 WRITE(*,*) MESSAGE
 END

http://www.computing.me.uk/�
http://www.computing.me.uk/�
http://www.computing.me.uk/tutorials/Modular%20Programming.pdf�
http://www.computing.me.uk/tutorials/FTN77%20User%20defined%20functions.pdf�

www.computing.me.uk

In the document on Fortran Functions3

, a function was developed for computing the area of a
rectangle from its length and width. In the next example, it is shown how a subroutine may be
used to carry out a similar task. The program and the output are as follows.

Note that in this case the subroutine has three arguments. The third argument is altered by the
subroutine and effectively contains the returned value. This is particularly useful when an array
is the output. In the following example a subroutine is used to find the sum of two 2-vectors and
effectively return the 2-vector result as an argument.

3 FTN77 User-defined functions

C Subroutines demo
 PROGRAM SUBDEMO
 REAL*4 ALENGTH, AWIDTH, ANAREA
 ALENGTH=3.0
 AWIDTH=2.0
 CALL RECAREA(ALENGTH,AWIDTH,ANAREA)
 WRITE(*,*) 'AREA= ',ANAREA
 END

C Subroutine RECAREA returns the area of a rectangle
C given its length and width
 SUBROUTINE RECAREA(LENGTH,WIDTH,AREA)
 REAL*4 LENGTH,WIDTH,AREA
 AREA=LENGTH*WIDTH
 END

C Subroutines demo 2
 PROGRAM ADDVEC
 REAL*4 A(2),B(2),C(2)
 A(1)=2.0
 A(2)=3.0
 B(1)=4.0
 B(2)=5.0
 CALL ADD2(A,B,C)
 WRITE(*,*) C
 END

C Subroutine ADD2 returns the sum of two 2-vectors
 SUBROUTINE ADD2(A,B,C)
 REAL*4 A(2),B(2),C(2)
 C(1)=A(1)+B(1)
 C(2)=A(2)+B(2)

http://www.computing.me.uk/�
http://www.computing.me.uk/�
http://www.computing.me.uk/tutorials/FTN77%20User%20defined%20functions.pdf�

